Pipeline Research Council International 2023 Research Exchange

Use of machine learning in nondestructive material property verification

Innovate Track PRCI-REX2023-052 NDE 4–8 (PR-335-173816)

LEADING PIPELINE RESEARCH

Introduction

- The aim of the presentation is to create awareness among the various stake holders of the pipeline industry about the role of machine learning in the non-destructive evaluation with an emphasis on model development and validation.
- Review the reasons behind the conflicting conclusion of the GTI report (DOT Project #729 and DOT/PHMSA CONTRACT NUMBER: 693JK31810003) issued September 28, 2021, and prior PRCI project NDE 4–8 (Catalog No. PR-335-173816 published May 08, 2018).

What is Non-Destructive Evaluation (NDE)?

TRADITIONAL DESTRUCTIVE (DIRECT)

NON-DESTRUCTIVE (INDIRECT)

March 7-8, 2023 | PRCI Research Exchange

From §192.607(d)(1), *"comparison with* destructive test results on materials of comparable grade and vintage."

What each data point represents?

Reference:

"Validating and quantifying In-Situ NDT Uncertainty of Line Pipe Material Properties", PPIM Paper No. 2023.118:87

7.39

iviean

-1.72

Alternative to unity plot – Bland Altman plot

	BMT MIC20 10kg	TDW PMI	MMT HSD
Mean (Bias)	-2.6	2.4	<mark>-1.7</mark>
Positive limit of agreement (Overestimation)	8.2	12.7	<mark>7.4</mark>

Data Reference: PRCI NDE 4-8 Catalog No. PR-335-173816 published May 08, 2018

What is technology validation?

- What is validated: "methods, tools, procedures, and techniques"
- How: Blind tests;
 - Laboratory blind tests
 - In field blind tests
 - In field experience
- Why: Risk of overfitting (overly complex models)

What is technology validation?

Against what: A gold standard (tensile test per API 5L)

What is quantified: "<u>Measurement</u> inaccuracy and uncertainty"

Non-Destructive Process

March 7-8, 2023 | PRCI Research Exchange

Machine Learning Field Process

Key Steps to a Validated Machine Learning Model

Training Data	Model Training	Blind Validation
Testing Data	Model Selection	Troubleshooting
Validation Data Internal Blind Validation External Blind Validation Lab Values Unknown 	Model Parameter Optimization Results Evaluation	Model Overfit Evaluation Outlier Detection

Model Generation

Model Validation

13

Model Performance

GTI Report – Key Contradictions

- Tensile tests not in accordance with API–5L as specified in Mega Rule
 - GTI conducted tensile testing in accordance with ASTM A370 where all samples were tested **longitudinally**
- Risk of model overfit due to lack of blind testing
- Incompatible data comparison
- Dataset size not large enough

Case Example – GTI Data

16

Including non-compliant tensile tests

Reference:

GTI Report Page 42 (DOT Project #729 and DOT/PHMSA CONTRACT NUMBER: 693JK31810003 issued September 28, 2021)

March 7-8, 2023 | PRCI Research Exchange

Reference:

Evaluating Conservative Shift

correct intervals for prediction: A tutorial on tolerance intervals for ordinary least-squares regression", Chemometrics and Intelligent Laboratory Systems, Volume 87, Issue 2, 2007, Pages 147-154.

Evaluating Conservative Shift using Published Data

Data: Combined valid results from both the GTI and the PRCI study

Commercial Offering Methods	Symmetric 2-Sided 60% Prediction Interval (ksi)	True 1-Sided Prediction Interval (ksi) using Tolerance Interval
Ball Indentation	4.8	5.9
Frictional Sliding	4.4	3.1*

* Note: For frictional sliding, a larger validation database is used to justify a 3.0 ksi conservative shift

Conclusions

- Validated non-destructive verification processes can eliminate the need for destructive testing of cutout samples to obtain material properties.
- ML models trained using an existing dataset perform differently when testing unknown pipe samples (blind).
- The reasons for conflicting findings between GTI report and prior PRCI project is errors in the GTI work.
- 1-sided tool tolerance is a better approach to conservatively account. for measurement uncertainty. March 7-8, 2023 | PRCI Research Exchange

Pipeline Research Council International

Intisar Rizwan I Haque Manager - Data Analytics, MMT +1 (617) 502-5636 i.rizwanihaque@bymmt.com