

In-Situ Measurement of Fracture Toughness using the Planing-Induced Microfracture Method

Pipeline Research Council International

Simon Bellemare San Diego, California February 27, 2024

PRCI Led Innovation on NDE for Pipe Toughness

Including

PR-335-173816-R01 Validation of In-Situ Methods for Material Property Determination

PR-610-183867-R01 Fracture Toughness via In-ditch Non-destructive Testing - Validation

Author(s)	Scott Riccardella, Jason Van Velsor, Aaron Dinovitzer, Bill Amend	Author(s)	Steven Palkovic, Yasamin Salamat, Brendon Willey, Simon Bellemare
Research Contractor	Structural Integrity Associates, Inc., BMT Fleet Technology Limited, DNV Inc. (research contractor)	Research Contractor	Massachusetts Materials Technologies LLC - 610
Release Date:	09/14/2018	Release Date:	09/08/2020
Number Of Pages	398	Number Of Pages	94
Catalog No:	PR-335-173816-R01	Catalog No:	PR-610-183867-R01
DOI No:	https://doi.org/10.55274/R0011521	DOI No:	https://doi.org/10.55274/R0011802

Published Pipe Toughness NDE Correlations

NDE 4-8 NDE-4C Model (Hardness + micrographs + chemistry)

NDE 2-9 Regression Models (NDTT $\delta_{chip} + r_{cup} + Al$)

It has no Been Easy... (Low TRL)

Unresolved Challenge with NDTT

Recent Modeling Research on Cutting (U. of Central Florida, Texas A&M, etc.)

MMT Technology Pivot

2015: Micromachining

2022: Planing-Induced Microfracture

Planing-Induced Microfracture

- Material is stretched and then it fractures
- There is a fractured ligament on both sides that protrudes from the cutting plane

Planing-Induced Microfracture in Action

High Pipe Toughness

Lower Pipe Toughness

General Learning Moment 1

In Elasto-Plastic Contact Mechanics,

What Does Steady State Means?

No Longer Path Dependent

Proof of Concept for the Method

Step #1: Introduce microfracture

Step #2 Scan Ligaments

Step #3 Assemble

Blade Travel Distance

Step #4: Physical Model

• According to Oh [1], there is a correlation between the fracture toughness (K_{Ic}) and the toughness measured using the area under the tensile stress-strain curve up to the elongation at break (K_f):

$$\left(K_{Ic}/\sigma_{y}\right)^{2} = \alpha \left(K_{f}/\sigma_{y}\right)^{2}$$

• K_f can be estimated using the yield strength, ultimate tensile strength (σ_u), and elongation at break (ε_f):

$$K_f \approx \varepsilon_f \left[k \sigma_y + (1-k) \sigma_u \right], \quad 0 < k < 1$$

• Hypothesis: the ligament height (LH) is linearly proportional to the elongation at break considering the material within the stretch passage is subjected to predominantly tensile stress and stretched to failure:

$$\varepsilon_f = a * LH + b$$

• **Proposed correlation between** *K*_{*Ic*} **and ligament height**:

$$K_{Ic}/\sigma_y = C_1 * [k + (1 - k)\sigma_u/\sigma_y] * LH + C_2/\sigma_y + C_3$$

[1] Oh, Gyoko. "A simplified toughness estimation method based on standard tensile data." International Journal of Pressure Vessels and Piping 199 (2022): 104733.

Validation Results

General Learning Moment 2

The direct measurement:

Indirect measurement:

Impact Energy

Benchmark Comparison

X-Axis = Direct Measurement

Using same pipe samples

The Blade Toughness Meter (BTM) Prototype

Field Prototype 2024 Q2

Test in Action

B. Island Removal

C. Ligament Analysis

>>> BTM Report (~Strain to Failure)

© 2024, Pipeline Research Council International

Field Implementation: Two Complementary Tools

ERW Seam Testing with the Current HSD

Technology Status

- BTM is approximated twice as accurate as NDTT.
- Preliminary result from a validation test of 30 vintage pipe samples shows an <u>average</u> predicted K value within ±20% of the <u>average</u> tested value.
 - Typical practice of taking lowest value of 3 measurements to be discussed.
- A prototype unit is developed and will be used in upcoming additional validation work and field trials.
- HSD and BTM are complementary tools for a complete solution.
- The HSD today (field procedures) includes the ability to receive a report for the 85% shear transition temperature & conservative upper shelf.

Concluding Remarks

- General Learning Moment 3: fracture toughness and material strength are two different properties
- In-situ minimally invasive tests to determine pipe toughness is becoming available.
- It is a considerable and collaborative effort.
- Many opportunities to engage in 2024: Industry validation programs, PHMSA BAA, field pilot projects.

Simon Bellemare CEO, MMT

617-868-0395

s.bellemare@bymmt.com