

#308 Validation of Planing-Induced Microfracture for Determining Pipe Body Toughness

Xuejun (Tony) Huang, Massachusetts Materials Technologies (MMT)

Co-authors

Bryan Feigel, Massachusetts Materials Technologies (MMT) Victor Jablokov, Massachusetts Materials Technologies (MMT)

Flaw Assessment

- Flaws such as cracks, welding defects, and corrosion can develop in pipelines during manufacturing or operational life.
- It is important to know whether a flaw is 'critical' to ensure that maintenance and repair efforts are both effective and economical.
- Crack size (current or future), stress, fracture toughness are three key factors for assessment of crack-like flaws.

 $K(Crack Size, Stresses) < K_c$

K(Crack Size, Stresses) > K_c

Fracture Toughness

- Unfortunately, many vintage pipelines do not have a record of fracture toughness.
- Fracture toughness can be evaluated using conventional lab testing (e.g., Charpy Impact Test, J-R curve)
 - Cut-out samples required, service intervention, time-consuming and expensive

New Method: Planing-induced Microfracture

Portable, In-situ, and Minimally Invasive.

Initial Proof of Concept

In-situ Pipeline Testing Configuration

New Method: Planing-induced Microfracture

- A true crack is introduced in the material utilizing a blade with central opening ("Stretch Passage").
- Crack propagates as the blade travel. Ductile fracture surface is confirmed.
- Correlation is established between the ligament features and the material fracture toughness.

Proof of Concept Lab Testing

• Lab testing setup for proof of concept.

Step #1: Introduce microfracture

Step #2 Ligament Height Processing

• Ligament height is measured using a laser scanning system.

Laser Scan Platform

Reconstructed Ligament Profile

Step #2 Ligament Height Processing

Ligament Height Processing

- Ligament height on two sides are aligned and combined.
- Region with stable combined ligament height is selected (highlighted in yellow). Average of ligament height within the region is calculated.

Step #3 Physical Model

• According to Oh [1], there is a correlation between the fracture toughness (K_{Ic}) and the toughness measured using the area under the tensile stress-strain curve up to the elongation at break (K_f):

$$\left(K_{Ic}/\sigma_{y}\right)^{2} = \alpha \left(K_{f}/\sigma_{y}\right)^{2}$$

• K_f can be estimated using the yield strength, ultimate tensile strength (σ_u), and elongation at break (ε_f):

$$K_f \approx \varepsilon_f \left[k \sigma_y + (1-k) \sigma_u \right], \qquad 0 < k < 1$$

• Hypothesis: the ligament height (LH) is linearly proportional to the elongation at break considering the material within the stretch passage is subjected to predominantly tensile stress and stretched to failure:

$$\varepsilon_f = a * LH + b$$

• Proposed correlation between *K*_{*Ic*} and ligament height:

$$K_{Ic}/\sigma_y = C_1 * [k + (1 - k)\sigma_u/\sigma_y] * LH + C_2/\sigma_y + C_3$$

[1] Oh, Gyoko. "A simplified toughness estimation method based on standard tensile data." International Journal of Pressure Vessels and Piping 199 (2022): 104733.

Validation Results

The Blade Toughness Meter (BTM) Prototype

Field Prototype of Blade Toughness Meter (BTM)

1. Surface prep: island making

2. BTM testing

Tester in Action

Field Prototype Safety Features

Non-Plunging End Mill

Physical Limit Stop

Field Implementation

Data Integration

In-Field Testing

Conclusions and Future Work

- A microcrack is introduced into the test sample using a special blade with a stretch passage.
- Features of the microcrack such as ligament height are extracted and correlate to the fracture toughness of the material.
- Preliminary result from a validation test of 33 vintage pipe samples shows predicted K value within ±20% of lab tested value.
- A prototype unit is developed and will be used in a coming JIP. Plan to test ~250 pipe samples. This will provide more data to the ML model and improve model accuracy.
- An in-situ, minimally invasive test to determine fracture toughness will help operators make better decisions on pipe repair, enhancing safety while reducing unnecessary costs.

Thank You

Xuejun (Tony) Huang

Manager of Materials Science, MMT

x.huang@bymmt.com

